A Deterministic Protocol for Sequential Asymptotic Learning
نویسندگان
چکیده
In the classic herding model, agents receive private signals about an underlying binary state of nature, and act sequentially to choose one of two possible actions, after observing the actions of their predecessors. We investigate what types of behaviors lead to asymptotic learning, where agents will eventually converge to the right action in probability. It is known that for rational agents and bounded signals, there will not be asymptotic learning. Does it help if the agents can be cooperative rather than act selfishly? This is simple to achieve if the agents are allowed to use randomized protocols. In this paper, we provide the first deterministic protocol under which asymptotic learning occurs. In addition, our protocol has the advantage of being much simpler than previous protocols.
منابع مشابه
Asymptotic properties of the sample mean in adaptive sequential sampling with multiple selection criteria
We extend the method of adaptive two-stage sequential sampling toinclude designs where there is more than one criteria is used indeciding on the allocation of additional sampling effort. Thesecriteria, or conditions, can be a measure of the targetpopulation, or a measure of some related population. We developMurthy estimator for the design that is unbiased estimators fort...
متن کاملForays into Sequential Composition and Concatenation in Eagle
The run-time verification logic Eagle is equipped with two forms of binary cut operator, sequential composition ( ; ) and concatenation (·). Essentially, a concatenation formula F1 · F2 holds on a trace if that trace can be cut into two non-overlapping traces such that F1 holds on the first and F2 on the second. Sequential composition differs from concatenation in that the two traces must overl...
متن کاملEfficient Exploration and Value Function Generalization in Deterministic Systems
We consider the problem of reinforcement learning over episodes of a finitehorizon deterministic system and as a solution propose optimistic constraint propagation (OCP), an algorithm designed to synthesize efficient exploration and value function generalization. We establish that when the true value function Q⇤ lies within the hypothesis class Q, OCP selects optimal actions over all but at mos...
متن کاملRANDOM WALKS WITH DRIFT - A SEQUENTIAL APPROACH (Revision 07/04)
In this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its associated sequential partial sum process under non-standard sampling. The asymptotic behavior differs substantially from the stationary situation, if there...
متن کاملRandom Walks with Drift - a Sequential Approach
In this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its associated sequential partial sum process under non-standard sampling. The asymptotic behavior differs substantially from the stationary situation, if there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.06871 شماره
صفحات -
تاریخ انتشار 2017